미국의 이공계 기피 현상 해석, 제언 The Pipeline: Still Leaking 중요부분만 대강 번역함

글쓴이
김덕양
등록일
2004-03-05 12:36
조회
6,083회
추천
5건
댓글
2건
미국내 이공계 기피 현상과 관련된 글입니다. 원래 회원게시판에 올라온 것을 준형님의 동의를 거쳐 이 게시판에 중요부분만 '대강' 번역해놓습니다.

- 2003년말 발표된 미 국립과학위원회의 보고서 "realizing america's potential" 은 미국에서 태어난 학생이 과학,기술, 공학분야를 전공하는 수가 앞으로 성장하게될 과학기술 분야의 직업부문을 메꿀 만큼 크지 못하다는 부분을 강조하고 있다. 필자는 이 보고서의 서론부분을 보고 데자뷰의 아픔을 느껴 이 글을 쓰게 되었다.

- 필자는 지난 1990년도 리차드 애트킨슨이 뉴올리언즈에 열린 AAAS 회의에서 대통령후보로서 과학기술자의 수요와 공급에 대해 파이프라인을 예로 들어 언급한 이후 (4백만명의 학생중이 겨우 9700명만의 박사가 되는 병목현상을 지칭함) 중고등학교와 대학에 과학교육을 보급(outreach)하는데 앞장서왔다.

- 수학과 과학부분을 어려워하여 포기하게되는 수많은 중고등학생과 대학초년생들을 위해 그동안 과학교육 프로그램을 보다 이해가 쉽도로 바꾸는데 노력했고, 과학기술자들의 현장을 직접 보여주기위해 인턴 프로그램을 운용하는 등의 노력을 해왔다. 국립과학재단의 도움과 각 대학 연구소들의 도움을 얻어 운용되는 인턴프로그램은 대화능력, 협동력, 교수능력 등에 주안점을 두고 어린 학생들이 과학에 흥미를 갖도록 하는데 큰 효과를 보여주었다.

- 그러나, 뛰어난 소질을 보여줬던 학생들이 하나 둘씩 대학의 과학수업에 밀려날 수 밖에 없었던 것들을 보고, 우리가 개선해온 중고등학교 과학교육과 다음단계에서의 대학교육에 큰 장벽이 존재함을 깨달을 수 있었다. 대학에서의 과학교육은 단지 능력이 출중한 학생들만 선별하는데 중점을 두었던 것이다. 우리의 중고등학교 교육은 과학적 사고력의 중요함을 강조했던 반면에 대학 교육에서는 과학을 전공하거나 대학원으로 가기 위해서는 선택된 소수안에 들어야한다는 것을 확연하게 했던 것이다.

- 이번 보고서는 대학교육 수준에서의 병목현상을 확인시켜준다. 85년과 2000년 사이 생물학을 제외한 분야의 이공계 학생수는전체적으로 18.6 퍼센트나 감소했다. 일단 학부과정에 들어오게 되면 중도포기하는 확률은 크게 높아진다. 보고서 조사결과 전체 이공계 학생의 반수도 안되는 사람이 5년내로 학부과정을 마치는 것으로 나와있다. 마이너리티들은 다른 그룹에 비해 더 높은 빈도로 떨어져 나간다. 75년에 세계 3위 수준이었던 24세 100명당 이공계 전공자 수는 13위로 떨어지게 되었다.

- 이번 보고서가 이러한 장애요소들에 대해서 서술하고 있는가? 대학교육 부분을 보면, 실험과목을 잘 가르치기 위한 자원과 장비의 중요성, 보다 나은 티칭과 조언을 위한 프로그램 개발 등을 강조하고 있다. 그러나 정확하게 어떠한 개선점들이 필요한지, 어떤 문제점들이 학생들로하여금 과학을 공부하는데 흥미를 잃게 하고 있는지에 대한 지적은 찾아볼수 없다.

- 이러한 내용들은 21세기 과학기술인력을 길러내는데 중요한 부문이다. 대학교육에 있어서의 많은 특징들이 중고등학교를 졸업한 학생들이 지니고 있는 과학에 대한 흥미와 동기와는 단절된 것처럼 보인다. 대다수의 학생들은 자신의 전공공부가 앞으로 자신이 일하게 될 분야에 적절한지 또 어떤 가능성들을 열어주게 될 것인지에 관심이 많다. 새로운 과학교육을 받은 이들은 여러가지 방향의 길들을 선택할 수 있는 유연함을 원하며 실제 종사하고 있는 과학기술자들과 만날 수 있는 기회가 증대되기를 고대하고 있다. 그들은 과학기술자로서의 경력을 따라나서는데 좀더 현실적인 경제요인들이 주어지기를 원한다. 많은 여학생들은 자신의 직업이 - 전형적인 선생님 직업을 넘어서 - 사회에 공헌할 수 있는 분야를 찾고 있다. 학부과정의 과목들이 요구로 하는 엄격함과 학생들이 필요로하고 또 높이 평가하는 따뜻한 조언과 지도의 상충점들을 해결하는 것이 가장 시급한 것이라 생각한다.

- 전반적인 이해를 돕는 과목들을 잘 짜내고 각 과단위로 사회봉사와 연결고리를 만들고, 학생들이 자신의 미래를 비추어 볼 수 있는 현직 과학기술인들과의 연결 등이 대안이 될 수 있다. 예를 들어 최근 미 물리학회는 학부 물리 프로그램에 학생들이 뒤쳐지지 않도록 하는 Strategic Programs for Undergraduate Physics 라는 보고서를 낸 바 있다.

- 필자는 이공계 학부과정에 등록한 학생들을 양육하기 위한 인센티브와 보상에 더욱 주안점을 두어야 한다고 생각한다. 이들이야말로 과학의 발전을 가장 보증해주는 인적 자원이다.


(이상 허접 번역이었습니다.)


원문 출처: http://www.americanscientist.org/template/AssetDetail/assetid/31290?&print=yes#31123


The Pipeline: Still Leaking

Fiona M. Goodchild

Late in 2003 the National Science Board released a new report, Realizing America's Potential, calling for national attention to the future of the country's science and engineering workforce. The report advocates national workforce policies to address "the potential peril to U.S. strength in science and engineering" and argues that the nation's scientific enterprise is threatened by declining participation by native-born students in science, technology, engineering and mathematics. There are not going to be enough skilled practitioners, research scientists and educators, warns the NSB, to fill the growing number of occupations in science and engineering.

The report is timely, since changes in immigration law are already affecting the supply of qualified personnel who can work in the United States. Historically the U.S. has benefited from the contributions of scientists, engineers and graduate students from other countries. This solution to national needs looks less and less promising as other countries develop their research and development enterprises. The NSB includes science teachers in the workforce, highlighting the need to recruit more scientifically and mathematically trained graduates into education.

As I read through the report's introduction, I experienced twinges of déjà vu. This is where I came in. I started working in science education in the U.S. in 1990, the year that Richard Atkinson chose to talk about the Supply and Demand for Scientists and Engineers in his presidential address to the American Association for the Advancement of Science meeting in New Orleans. I saw those ubiquitous charts depicting the pipeline of potential science and engineering students that started at 4 million students and dwindled to 9,700 (0.24 percent) who were expected to achieve a Ph.D. in science or engineering. That rate of completion was judged to result in a serious shortfall in workforce numbers. The National Science Foundation was setting up a Division of Education and Human Resources and launching a new effort to integrate research science and education.

Mobilizing the Community

I was part of that initiative. I had taken a position as education coordinator at one of the NSF Science and Technology Centers that was in the vanguard of what is often described as "outreach." As I understood it, one of our important goals was to improve opportunities for learning and teaching science, supported by collaboration between research scientists—a term I use in the broader sense, to include engineers—and educators. As a former teacher who had just completed graduate research in cognitive psychology, I was intrigued by the challenge to promote more science education. I value the analytical and quantitative thinking that is a major facet of coursework in science, engineering and mathematics. Students usually get the chance to acquire this knowledge only inside a formal degree structure. Why do so many miss this opportunity? Was it possible to make the subject areas more attractive to a broader range of students? Could we make this national problem a scientific community problem?

I had spent over 10 years at a research university where I talked daily with students who wanted to improve their performance in math and science courses. Many struggled with math and then gave up on science or engineering. Others described introductory courses as a series of hoops and hurdles that only one in three students was expected to survive. At home I had listened to our teenage daughters express serious doubts about whether it was worth making the extra effort that science courses were famous (or notorious) for. I believed that I was fairly well versed about why many students do not choose science careers.

I began to work with research scientists who adopted new roles in a range of partnerships with science teachers and K–12 schools. One important goal was to connect with teachers so that they could develop enough familiarity and understanding to become "representatives of science in their classrooms," a theme highlighted in the emerging national standards for science teachers. Faculty also opened their lab groups to high school and community college interns. The design of the internship program highlighted communication, teamwork and mentoring to introduce younger students to some of the more intriguing ideas in current science and to encourage them to consider careers in science, engineering or mathematics. Once they got a closer look at how scientists work, we thought, they might form more realistic impressions that would contradict traditional images of science as isolated and antisocial. The policies of funding agencies such as NSF encourage the involvement of scientists in such ventures. NSF's requirement that investigators make a broader impact has created new interest in the way that scientists can influence the next generation.

As we recruited volunteer undergraduates, we found that they had a strong interest in projects that appeared to enhance their professional skills and broaden their understanding of how they could apply their science and math training. Their new role in creating or demonstrating teaching resources seemed to help them understand the relevance of their academic work and to make connections with the community. It became clear that many undergrads in science and engineering courses appreciate the chance to study a complementary topic, such as business or art or education, and to think more about how their scientific training could he applied in other fields. It wasn't just K–12 science that needed attention.

Running into Roadblocks

When we tracked the progress of former interns, we ran into questions about the nature of the next step after high school or community college—undergraduate science and engineering. We heard reports of competitive and intimidating introductory courses, and of textbook-oriented teaching that was disconnected from the problems that they had worked on in research labs. High school teachers were disappointed to find that their most promising science students reported that they were switching out of undergraduate science. Had we created unrealistic expectations? A more plausible explanation seemed to be that these young students had encountered the traditional mining-and-sorting approach that underpins many courses that select for only the "best and the brightest" and therefore require that students be graded on a curve. Our projects were based on the assumption that it would be useful for all students to understand the value of scientific thinking. Their college courses made it clear that only certain students would be selected as majors or prospective graduate students.

The new NSB report confirms the bottleneck at the undergraduate-degree level. Between 1985 and 2000 the number of baccalaureate degrees in the STEM (science, technology, engineering and mathematics) fields, excluding biology, fell by 18.6 percent. Once young students arrive in community college and undergraduate courses, serious attrition occurs. As this report documents, fewer than half of those students intending to major in science and engineering fields complete that degree within five years. Members of underrepresented minorities drop out at a higher rate than other groups. The trend for participation by domestic students is downward. The U.S. has slipped from third to thirteenth place in terms of undergraduate completion of STEM degrees since 1975.

FullImage_200422125438_648.gif

Figure 1. Realizing America's Potential, a new report from the National Science Board, describes domestic student interest in critical fields of science and engineering as "flat or reduced" despite more than a decade of concerted mobilization of the nation's scientific, educational and industrial communities to improve and increase enrollment in degree programs. The author considers what disincentives might contribute to the continuing high rates of undergraduate attrition.
National Science Foundation data for selected years; illustration adapted from the NSB report.


FullImage_200422125619_647.gif

Figure 2. Between 1975 and 1999 the U.S. slipped from third to 14th place in the proportion of 24-year-olds holding natural science and engineering degrees, as other nations built their science and engineering workforces more rapidly. The author suggests a need to implement the report's call for "modification of the educational environment, particularly better teaching and advising" and to understand how incentives and rewards may be poorly matching student expectations.
Data from the National Science Foundation's Science and Engineering Indicators 2002. China's data are for 1985 and 1999.


Does the report reveal what the disincentives and obstacles may be? The section on college programs argues for the necessary equipment and resources to teach laboratory courses and calls for "modification of the educational environment, particularly better teaching and advising" to improve the nature of introductory courses and the focus on the individual student. However, it does not explore what modifications are required and what specific problems may be causing students to lose interest in studying science.

Relevance, Realism and Rigor

Such questions, which require analysis of current teaching practices, are of vital importance to the future of the scientific workforce of the 21st century. Many features of undergraduate programs now seem disconnected from the interests and motivation of the students who are graduating from high school. Many of these students are looking for relevance and the chance to explore how their major might prepare them for the workforce. Those from nontraditional backgrounds need more flexibility in sequencing and options, and more chances to connect with practicing scientists. They need more realism about the economic factors inherent in pursuing a career in science and engineering. Many female students are looking to identify careers that integrate a social contribution—beyond the stereotypical role of teacher. It seems a matter of urgency to resolve some of the basic tension between the rigor that science courses demand and the attention to instruction and mentoring that students need and appreciate.

This challenge does not seem impossible to address. Undergraduate science is the part of science education that can be controlled by academic scientists. Some of them have already made recommendations on new pedagogy and instructional strategies. What seems even more pertinent is the need to focus on how to design comprehensive academic courses, alongside access to social networks within individual departments and career contacts that help students to envisage their future prospects. For example, the American Institute of Physics recently published a report on Strategic Programs for Undergraduate Physics that stresses the importance of collaboration between academic faculty to improve student retention in undergraduate physics programs.

Reading the NSB report from a grass-roots perspective, I would have liked to see much more focus on the incentives and rewards that are needed to nurture those students who do register in undergraduate science and engineering courses. These are the human resources that are most likely to guarantee scientific excellence.

  • 준형 ()

      번역 감사합니다.

    미국은 이공계 기피를 그 동안 외국 피의 수혈로 때워 왔는데, 우리도 과연 그게 가능 할까요?

  • 쉼업 ()

      물은 빈 곳을 찾아 스며 들듯이 빈자리는 채워 지지 않겠습니까? 다만 채워질 뿐이겠죠.

목록


타분야진출

게시판 리스트
번호 제목 글쓴이 등록일 조회 추천
967 [펌] 佛연구원들, 과학연구촉진 요구 시위; 파리 7천명, 마르세이유 3천명 김덕양 03-20 4231 6
966 앗 빅 브라더와 관련된 기사가 떴네요. -_-;; 댓글 1 김덕양 03-15 5078 9
965 [전자신문] "경직된 한국 R&D 문화가 창조적 발명 장애물로 작용" ; 외국인 연구원의 국내 연구환경에 대… 댓글 4 김덕양 03-12 5351 7
964 [전자신문] 美·EU·日 나노기술 'R&D경쟁' 댓글 1 김덕양 03-10 4757 6
963 답변글 EE times에 나온 나노기술의 정의 댓글 3 관전평 03-18 4577 6
962 [연합] 佛과학자들, '이공계 홀대' 항의 집단사퇴키로 김덕양 03-10 4372 5
열람중 미국의 이공계 기피 현상 해석, 제언 The Pipeline: Still Leaking 중요부분만 대강 번역… 댓글 2 김덕양 03-05 6084 5
960 [중앙] 중국 컴퓨터업 롄샹 매출 24% R&D 투자 김덕양 03-03 4153 3
959 하버드대학, 줄기세포 연구센터 건립하기로.. 댓글 1 김덕양 03-03 4877 5
958 Bill Gates told students to pursue CS as a career 댓글 1 명가 03-02 6180 4
957 답변글 전문을 퍼왔습니다. McGyver 03-04 4379 4
956 [미국취업] 인터넷 검색업체 구글 직원채용 댓글 2 nobody 02-25 6635 2
955 [한겨레] 영국도 ‘이공계 수난시대’ 김덕양 02-24 6277 3
954 답변글 [re] 기자의 의도가 좀 찜찜하지 않습니까? 댓글 3 nobody 02-25 6015 3
953 [경향] 中과학기술 기적 아니다 ; 국가과학기술대상 포상금 7억 5천! 댓글 4 김덕양 02-23 4522 2
952 [연합] 美법원, DVD 복사SW 불법 판결 ; 우씨... 댓글 11 김덕양 02-21 5880 35
951 알랑 스토크 프랑스 국립응용과학원 총장 김덕양 02-20 4713 2
950 [Science/Letter] French Scientists Take a Stand 댓글 4 준형 02-17 3996 1
949 [중앙] "중국선 이공계 최고 인기" ; 장학생 구야야오 인터뷰 댓글 5 김덕양 02-17 5587 1
948 특허청 기술직(5급) 제한경쟁 특별채용시험 공고 댓글 2 김덕양 02-16 7427 0


랜덤글로 점프
과학기술인이 한국의 미래를 만듭니다.
© 2002 - 2015 scieng.net
모바일 버전으로 보기